Langsung ke konten utama

Pengantar Stokastik : Random Variable

Abstract—Malakah ini membahas tentang pengenalan Random Variable. Pemahaman tetang random variable akan membantu mempermudah pemahaman tantang proses stokastik atau proses random serta penerapannya dalam berbagai bidang khususnya bidang teknik komunikasi dan informasi, maupun bidang – bidang lainnya. Proses, fenomena atau kejadian yang terjadi pada bidang teknik umumnya bersifat random karenanya didalam perhitungan dan pencarian solusi akan melibatkan variabel yang random pula (Random Variable). Dalam makalah ini akan diuraikan juga bentuk – bentuk dari random variable yang berupa fungsi – fungsi random variable.


Index TermsProbability, random variable, discrete random variable, probability mass function, commulative distribution function, continues random variable, probability distribution function



PENDAHULUAN

Pada setiap aplikasi sain dan teknologi, hasil - hasil pengukuran dan observasi selalu diekspresikan dalam quantitas numerik (angka). Hasil observasi dan pengukuran yang berupa numerik tersebut mempunyai variasi yang tidak tentu (uncertain) dalam setiap kali kemunculannya. Nilai inilah yang kemudian direpresentasikan dengan random variable.

Jika probabilitas mendefinisikan hasil diskrit dari suatu percobaan yang dilakukan secara acak, maka random variable adalah fungsi yang mendefinisikan percobaan yang dilakukan secara acak[2].

Random Variable (r.v) adalah nilai yang berkaitan dengan hasil sebuah percobaan. Hasil percobaan atau pengamatan terhadap fenomena alam umumnya mempunyai banyak nilai. Karena merupakan hasil dari suatu percobaan yang bersifat dinamik dan acak, maka nilai ini mempunyai juga mempunyai sifat berubah secara acak dan tidak dapat dipastikan. Dengan kata lain, nilai RV merupakan fonomena yang acak dan juga nilai numerik dari suatu fenomena yang acak[2]. Random Variable juga sering disebut Stochastic.

DEFINISI RANDOM VARIABLE

Definisi

Andaikan suatu percobaan menghasilkan suatu bidang sampel yang diberi notasi S. Random variable X(w) adalah fungsi riil yang berhubungan dengan nilai tunggal yang merupakan bilangan riil pada bidang sample S. Atau dapat dengan kata lain nilai X(w) tersebut merupakan nilai sampel w pada bidang sampel S. Bidang S disebut sebagai domain dari r.v w. Sekumpulan nilai X disebut sebagai range dari r.v. X. Gambar 1 menunjukkan konsep dari domain dan range dari X.


Gambar 1 R.v yang berasosiasi dengan titik sampel.

Contoh random variable pada percobaan tossing koin mata uang dapat digambarkan sebagai berikut. Koin mempunyai dua sisi yang disebut head (H) dan tail (T). Jika hanya digunakan 1 koin, maka kita dapat mendefinisikan hasil percobaan tossing koin tersebut dengan r.v X sebagai berikut :

X(T) = 0

X(H) = 1 atau kita dapat mendefinisikan r.v lainnya misalnya, Y(T) = 1, Y(H) = 0 atau Z(T) = 0 dan Z(H) = 0

X(T) = 0 dapat dipahami bahwa nilai probabilitas keluarnya sisi T (tail) pada suatu bidang percobaan (S) adalah 0 atau peluang munculnya tail adalah 0. Sedangkan r.v. X(H) = 1 digunakan untuk menunjukkan bahwa peluang munculnya H (head) adalah 1. Untuk menyatakan nilai r.v yang lain digunakan penamaan variable lain (mis. Y atau Z).

Semua nilai – nilai yang dihasilkan dari percobaan tossing koin tersebut dapat digambarkan dalam maping bidang sample. Maping bidang sample pada garis riil dari hasil percobaan tersebut ditunjukkan pada gambar 2.


Gambar 2 R.v yang menggambarkan hasil percobaan tossing satu buah koin.

Event yang didefinisikan oleh Random Variable

Jika X adalah r.v dan x merupakan nilai tetap (numerik), maka Event Ax adalah bagian dari bidang S yang berisi semua titik sampel riil dimana r.v X terkait dengan angka x. Hal ini dapat dituliskan :

Event Ax mempunyai probabilitas yang dapat dituliskan :

Kita dapat mendefinisikan berbagai macam Event dalam rendom variable. Misalkan kita mempunyai nilai tetap x, a dan b, kita bisa mendefinisikan :

Keterangan :

P[X ≤ x] adalah probabilitas dimana nilai X lebih besar atau sama dengan x.

P[X > x] adalah probabilitas dimana nilai X lebih besar dari x, hal ini artinya sama dengan 1− P[X ≤ x].

P[a < X < b] adalah probabilitas dimana nilai X berada diantara nilai a dan b.

Fungsi Distribusi (Distribution Function)

Suatu fungsi x(t) dapat dipahami sebagai aturan – aturan hubungan antara nilai (aturan) x dan nilai t. Aturan – aturan antara x dan t dapat berupa kurva, table maupun rumus, misalnya x(t) = t2. Hubungan x(t) = t2 dapat dipahami hubungan x dan t adalah t2, sehingga jika t = 2 maka x = 4.

Random Variable adalah fungsi yang mana domainnya merupakan set S yang diperoleh dari hasil percobaan [1]. Salah satu fungsi yang dimaksud disini adalah fungsi distribusi. Sebagaimana disebutkan pada poin 1, jika X adalah r.v dan x adalah sebuah nilai, maka kita dapat mendefinisikan Event [X ≤ x]={x | X(w) ≤ x}. Distribution Function dari X dapat dituliskan :

FX(x) menunjukkan probabilitas yang mana r.v X berada pada nilai lebih kecil atau sama dengan x.

Beberapa sifat distribution function adalah :

  1. FX(x) bukan fungsi yang menurun, sehingga jika x1 < x2, maka FX(x1) ≤ FX(x2). Sehingga, nilai FX(x) dapat naik atau tetap tetapi tidak dapat turun.

  2. 0 ≤ FX(x) ≤ 1

  3. FX (∞) = 1

  4. FX (−∞) = 0

  5. P[a < X ≤ b]= FX (b)− FX (a)

  6. P[X > a]= 1−P[X ≤ a]= 1− FX (a)


DISCRETE RANDOM VARIABLES

Discrete random variables adalah random variable yang dapat memenuhi pada sebagian besar angka yang dapat dihitung / diukur pada nilai – nilai yang mungkin [2]. Misalkan kita mempunyai bidang sampel kerusakan mesin. Kita dapat mendefinisikan semua kemungkinan penyebab kerusakan sebagai bidang sample, misalnya dapat ditulis S = {elektrik, mekanik, human error}. Setiap jenis kerusakan dapat dihubungkan dengan biaya perbaikan, misalnya {50, 200, 350}. Biaya itu merupakan discrete r.v : 50, 200 dan 350. Dari kasus diatas dapat ditulis suatu r.v misalnya X(elektrik=50) = 0,1. Ini dapat dipahami bahwa nilai probabilitas kerusakan yang disebabkan oleh sebab – sebab elektrik yang berbiaya 50 adalah 0,1.

Penulisan suatu r.v dalam nilai diskrit dapat dituliskan dalam dua jenis fungsi distribusi yaitu Probability Mass Function (PMF) dan Cumulative Distribution Function (CDF).

Probability Mass Function (PMF)

Untuk nilai discrete r.v X, Probability Mass Function (PMF), px(x) dapat didefinisikan sebagai :

pX(x) = P[X = x]

Probability Mass Function (PMF) selalu lebih besar daripada 0 untuk setiap nilai x yang masih dapat dihitung / diukur. Pada keadaan tertentu, jika kita hanya mengasumsikan bahwa nilai X hanya terkait dengan satu nilai xi, x2, …. xn, maka:

pX(xi) ≥ 0 , i = 1, 2,..., n

pX(x) = 0 , sebaliknya

Cumulative Distribution Function (CDF)

CDF dari X dapat diekspresikan pada pX(x) sebagai :

CDF dari r.v merupakan fungsi bertahap. Jika X mempunyai nilai x1, x2, x3, … dimana x1<x2<x3 … maka nilai FX(x) konstan pada interval antara xi-1 dan x1, kemudian akan bernilai pX(x) pada xi, dimana i=2, 3, … Sehingga dalam kasus ini, FX(x) merupakan penjumlahan dari semua mass probabilitas yang dapat kita hitung antara -∞ sampai ∞ [2].

Diasumsikan r.v cost mempuyai PMF yang diberikan sebagai berikut :

P (cost=50)=0.3, P (cost=200)=0.2, P (cost=350)=0.5

Maka CDF dapat diperoleh :

F_cost(x) =     0 x < 50

                        0,3 50 < x < 200

                        0,5 200 ≤ x < 350

                        1 x ≥ 350

Grafik dari CDF dari fungsi tersebut ditunjukkan gambar 3.


Gambar 3 Grafik CDF dari fungsi cost (x).



CONTINUOUS RANDOM VARIABLES

Continuous Random Variables digunakan untuk mendefinisikan jika suatu set dari nilai – nilai yang ada tidak dapat dihitung atau tentukan secara pasti. Nilai tersebut bersifat kontinyu. Kita dapat menyatakan r.v X sebagai Continuous Random Variables jika probabilitas r.v X yang merupakan anggota dari A, P(X A) mempunyai pola :

X adalah Continuous Random Variables jika dan hanya jika ia mempunyai range yang memuat suatu interval dari bilangan riil (baik finite maupun infinite) [3].


Probability Density Function (PDF)

Fungsi fX(x) disebut sebagai dari random variable X dan dapat ditulis [2]:

Probability Density Function (PDF) mempunyai sifat – sifat :

  1. fX(x) ≥ 0

  2. Jika X harus dinyatakan dalam suatu nilai maka : 

  3. yang mana

  4.  

KESIMPULAN

Random variable harus dipahami sebagai suatu nilai yang dinyatakan dalam bentuk fungsi - fungsi. Pendekatan nilai random variable berbeda dengan variable diskrit yang digunakan pada perhitungan statistik. Hal ini disebabkan karena nilai yang dinyatakan dalam r.v sesunggunya adalah bentuk diskrit dari suatu fungsi, bukan nilai distrit yang sesungguhnya.



REFERENCES

  1. Papoulis, “Probability, Random Variables and Stochastic Processes” , 3nd, New York: McGraw-Hill, 1991,

  2. Ibe, Oliver C., “Fundamentals of Applied Probability and Random Processes”, Elsevier Academic Press, 2005.

  3. Gubner, John A., “Probability and random processes for electrical and computer engineers”, Cambridge University Press, 2006.







Komentar

setiyo budi mengatakan…
salah satu alasan mengapa kita tidak boleh sombong dengan ilmu pengetahuan yang kita miliki adalah bahwa kebenaran - kebenaran (ilmu duniawi) yang selama ini kita pahami diperoleh secara stokastik ...

Postingan populer dari blog ini

Perhitungan Daya Ruang TIK

Ilustrasi Ruan TIK Bermula dari kenyataan bahwa ruang pembelajaran di sekolah, khususnya di SMK Cendika Bangsa Kepanjen Malang yang banyak membutuhkan peralatan TIK dalam melaksanakan kegiatan pembelajarannya, maka penulis melakuan pengukuran terhadap beberapa peralatan TIK yang nantinya dapat digunakan sebagai bahan pertimbangan dalam menentukan daya suatu ruangan yang menggunakan peralatan TIK. Pengukuran arus dilakukan dengan tang ampere MT-87B. Setelah arus yang mengalir ke peralatan dapat diketahui, maka daya nyata dapat dihitung berdasarkan hasil pengukuran tersebut, dan bukan berdasarkan spesifikasi daya yang tertulis pada perlatan. Rumus daya sesaat untuk arus bolak balik / AC dapat dicari dengan rumus seperti daya tegangan DC, P = V x I Tabel Hasil Pengukuran Tabel pengukuran arus beberapa peralatan TIK adalah sebagai berikut: No. Jenis peralatan Spesifikasi Arus terukur Daya 1. PC H81/G3240/4G/320GB/Samsung 15,6” 0.27 ...

Dasar teknik instalasi listrik untuk teknisi komputer – bagian 1

Oleh : Setiyo Budi Tidak dapat dipungkiri bahwa komputer adalah sebuah perlatan listrik yang membutuhkan sumber daya yang sesuai agar dapat beroperasi dengan baik / maksimal. Salah satu syarat agar daya listrik dari sumber (PLN) dapat mengoperasikan komputer dengan baik maka diperlukan prosedur pengkabelan atau instalasi kabel yang sesuai dengan standar. Simbol – simbol listrik Sebelum melakukan instalasi kelistrikan pada suatu ruang atau laboratorium komputer, maka yang pertama perlu dilakukan adalah melakukan perancangan pengkabelan pada ruang tersebut. Manfaat perencanaan ini diantaranya adalah untuk pengembangan dan troubleshooting di kemudian hari. Perancangan dilakukan dengan menggambar diagram skematik yang menggambarkan semua peralatan yang akan dihubungkan. Untuk itu perlu diketahui simbol – simbol kelistrikan yang digunakan untuk keperluan tersebut. Diagram skematik adal...

Komponen Elektronika pada Rangkaian Komputer (part 1 of 2)

Bagian 1 : Komponen Pasif Perangkat komputer yang digunakan saat ini merupakan komputer generasi ke 4 yang dapat dikatakan sebagai perangkat elektronika. Hanya hardisk dan CD/DVD rom yang di dalamnya masih terdapat mekanisme mekanik, namun kedua perangkat tersebut tetap dikatakan sebagai perangkat elektronik. Perangkat elektronika mengolah sinyal – sinyal melalui rangkaian – rangkaian elektronik yang bekerja secara bersama / terintegrasi dalam suatu sistem. Satu rangkaian / sistem komputer seperti kita ketahui tersusun dari banyak rangkaian pendukung / penyusun. Rangkaian ini dapat berupa rangkaian yang terintegrasi atau menyatu pada motherboard (on-board) maupun rangkaian yang dapat dipasang terpisah, card – card atau perangkat eksternal. Satu rangkaian dengan fungsi tertentu dapat tersusun dari satu atau lebih rangkaian dasar. Rangkaian – rangkaian tersebut tersusun atas kom...